We want to find the values of the parameters α, β, \ldots in $y=f(x, \alpha, \beta, \ldots)$ by minimizing the sum

$$
S(\alpha, \beta, \ldots)=\sum_{i=1}^{N}\left(f\left(x_{i}, \alpha, \beta, \ldots\right)-y_{i}\right)^{2} .
$$

We have N pairs of measured data $x_{i}, y_{i}(i=1,2, \ldots, \mathrm{~N})$.
The conditions of the minimum:

$$
\frac{\partial S}{\partial \alpha}=0, \frac{\partial S}{\partial \beta}=0, \ldots
$$

By solving this algebraic equation system we can get the best values for α, β, \ldots.
This method can be applied when
$>\quad$ the error of x is negligible compared to the error of y, and
$>\quad$ the variance of y is independent of the value of x.

In case of a linear function $\boldsymbol{y}=\boldsymbol{a x}+\boldsymbol{b}$
the sum of squares of the differences is $S(a, b)=\sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right)^{2}$,
so we get the following algebraic equations:

$$
\begin{aligned}
& \frac{\partial S}{\partial a}=2 \sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right) \cdot x_{i}=0 \quad \Rightarrow a \sum_{i=1}^{N}\left(x_{i}^{2}\right)+b \sum_{i=1}^{N}\left(x_{i}\right)-\sum_{i=1}^{N}\left(x_{i} \cdot y_{i}\right)=0 \\
& \frac{\partial S}{\partial b}=2 \sum_{i=1}^{N}\left(a x_{i}+b-y_{i}\right) \cdot 1=0 \quad \Rightarrow \quad a \sum_{i=1}^{N}\left(x_{i}\right)+N \cdot b-\sum_{i=1}^{N}\left(y_{i}\right)=0
\end{aligned}
$$

The solution is

$$
b=\frac{\sum_{i=1}^{N}\left(y_{i}\right)}{N}-a \frac{\sum_{i=1}^{N}\left(x_{i}\right)}{N} \quad \text { and } \quad a=\frac{\sum_{i=1}^{N}\left(x_{i} \cdot y_{i}\right)-\frac{\sum_{i=1}^{N}\left(x_{i}\right) \cdot \sum_{i=1}^{N}\left(y_{i}\right)}{N}}{\sum_{i=1}^{N}\left(x_{i}{ }^{2}\right)-\frac{\left(\sum_{i=1}^{N}\left(x_{i}\right)\right)^{2}}{N}}
$$

By introducing the averages

$$
\bar{x}=\frac{\sum_{i=1}^{N}\left(x_{i}\right)}{N}, \bar{y}=\frac{\sum_{i=1}^{N}\left(y_{i}\right)}{N}, \overline{x \cdot y}=\frac{\sum_{i=1}^{N}\left(x_{i} \cdot y_{i}\right)}{N}, \overline{x^{2}}=\frac{\sum_{i=1}^{N}\left(x_{i}^{2}\right)}{N}
$$

the solution can be written as

$$
a=\frac{\overline{x \cdot y}-\bar{x} \cdot \bar{y}}{\overline{x^{2}}-\bar{x}^{2}} \quad \text { and } \quad b=\bar{y}-a \cdot \bar{x}
$$

In case of a linear function $\boldsymbol{y}=\boldsymbol{a x}$ (the intercept of the line is zero)

$$
S(a)=\sum_{i=1}^{N}\left(a x_{i}-y_{i}\right)^{2} \rightarrow \min . \quad \text { leads to } \quad a=\frac{\overline{x \cdot y}}{\overline{x^{2}}} .
$$

The standard deviation

of the slope and of the intercept can be calculated applying the following formulae:

In case of $\boldsymbol{y}=\boldsymbol{a} \boldsymbol{x}+\boldsymbol{b}$

$$
s_{a}=\sqrt{\frac{\sum_{i=1}^{N}\left(a \cdot x_{i}+b-y_{i}\right)^{2}}{N \cdot(N-2) \cdot\left(\overline{x^{2}}-\bar{x}^{2}\right)}} \quad \text { and } \quad s_{b}=\sqrt{\overline{x^{2}}} \cdot s_{a}
$$

In case of $\boldsymbol{y}=\boldsymbol{a x}$

$$
s_{a}=\sqrt{\frac{\sum_{i=1}^{N}\left(a \cdot x_{i}-y_{i}\right)^{2}}{N \cdot(N-1) \cdot \overline{x^{2}}}}
$$

