OPTICS DATA SHEET

1. Determination of the focal length of a convex lens

Data:

The distance between the object and the screen:

The distance between the object and the lens d_{obj} =

The distance between the image and the lens d_{img} =

The size of the image $s_{img} =$

Evaluation:

1/1. Formula [F2] : \rightarrow f =

1/2. Formula [F3] : \rightarrow M =

 \rightarrow s_{obj} =

1/3. Diagram: on a separate A4 sheet.

1/4. Formula for f: f =

 \rightarrow formula for Δf =

calculation: $\Delta f =$

2.A Estimation of the thickness of a hair fiber with a lens

Data: f = 50 mm

The distance between the object and the lens d_{obj} =

The distance between the image and the lens $d_{img} =$

The size of the image (diameter of the hair fiber) s_{img} =

Evaluation:

2/1. M =

2/2. The width of the hair fibre: $s_{obj} =$

OPTICS DATA SHEET

2.B Measuring the width of a hair fiber with diffraction

Data: $\lambda = 650 \text{ nm}$

The distance between the hair and the screen: L =

The average distance between two dark spots: $\Delta x =$

Evaluation:

The width of the hair: D =

3. Determination of the refractive index of prism

Data: angle of the prism: $\Phi = 60^{\circ}$

The angle of incidence α when δ =90°: α =

Evaluation:

Formula: n =

Calculation: n =