Subjects
Heat conduction: 1-6,9,10,12,14,15,19,20, 36, 52
Variational principles and techniques, computational methods:
1-5,8-10,14,19, 20, 21,44, 52, 57, 58
Second Law of thermodynamics: 7, 11, 12, 14, 19, 21, 36, 40, 46, 47,48, 52
Thermodynamics /other topics/ 3,11,32,35, 57, 59
Dynamical systems:13, 16-18, 21-28, 30,33, 34, 36, 41, 43, 46-48,
Singularities and bifurcations: 13, 16,17-20, 22, 23, 26-28, 29-31, 33, 34, 36,37,39, 43, 47,51,54, 55
Waves: 15, 38, 41, 42, 44,45, 49,50,52, 56 , 58
1. FARKAS, H. 1968. The reformulation of the Gyarmati Principle in a generalized "G" picture. Z.Phys.Chem. 239: 124-132.
2. FARKAS, H. 1971. The treatment of non-linear equations of heat conduction with the Gyarmati Principle. III. Conference on Drying. Paper A/1. Budapest.
3. FARKAS, H. & Z. NOSZTICZIUS 1971. On the non-linear generalization of the Gyarmati Principle and Theorem. Annalen der Physik 27: 341-348.
4. FARKAS, H. 1975. Error estimation for approximations of the solution of the one-dimensional stationary heat conduction equation on the basis of the Governing Principle of dissipative Processes. Int.J.Engng.Sci. 13: 1029-1033.
5. FARKAS, H. 1975. On the phenomenological theory of heat conduction.Int.J.Engng.Sci. 13: 1034-1053.
6. FARKAS H. 1975. Stacionárius hmérsékleteloszlások sajátosságai. Magyar Fizikai Folyóirat 23: 157-163.
7. FARKAS H. 1975. Megjegyzések az irreverzibilit és fogalmához. Filozófiai Közlemények II. ELTE TTK, Budapest. 187-202.
8. FARKAS H. 1976. On the sufficient condition of the extremum of Gyarmati's Governing Principle of Dissipative Processes. Journal of Non- Equlibrium Thermodynamics 1: 117-123.
9. FARKAS H. & NOSZTICZIUS Z. 1977. Variációs módszer alkalmazása hővezetési probléma kiszámításában. BME Fizikai Intézet kutatómunkája 1972-1977. Budapest. 252-257.
10. FARKAS, H. & Z. NOSZTICZIUS. 1977. A variational method for solving heat conductional problems. Periodica Polytechnica EE.21: 239-242.
11. FARKAS, H. 1978. Thermodynamic concepts for a class of one-ports. Acta Phys.Hung. 45: 317-326.
12. FARKAS, H. 1980. Generalization of the Fourier law. Periodica_Polytechnica_ME_24: 291-308.
13. NOSZTICZIUS, Z. & H. FARKAS 1981. An old model as a new idea in the modelling of the oscillatiing BZ reaction systems. In: Modelling of Chemical Reaction Systems. Eds. E.H. Ebert, P. Deuflhard, and W. Jaeger, pp: 275-281. Heidelberg: Springer.
14. FARKAS, H. 1982. A new proof and generalization of the Maximum Principle of heat conduction.J.Non-Equilibrium Thermodyn.7: 355-362.
15. FARKAS, H. & I. MUDRI 1984. Shape-preserving time-dependences in heat conduction. Acta Phys.Hung. 55: 267-273.
16. NOSZTICZIUS, Z., H. FARKAS, & Z.A. SCHELLY 1984. Explodator: a new skeleton mechanism for the halate driven chemical oscillators. J.Chem.Phys. 80: 6062-6070.
17. NOSZTICZIUS, Z., H. FARKAS, & Z.A. SCHELLY 1984. Explodator and Oregonator: parallel and serial oscillatory networks. A comparison. React.Kinet.Catal.Lett. 25: 305-311.
18. NOSZTICZIUS, Z., H. FARKAS, & Z.A. SCHELLY 1984. Process E2 of the Explodator model. In: Non-Equilibrium Dynamics of Chemical Systems. Synergetics 27. p.: 238-239. Eds.: C. Vidal & A. Pacault. Springer.
19. FARKAS H. 1983. Kvalitatív és kvantitatív összef üggések a hővezetés elméletben. Műszaki Fizika, Atomtechnika, BME. 67-72.o.
20. FARKAS H. 1985. Egy hővezetési probléma: a lokális potenciál időfüggése. Alk.Mat.Lapok 11: 343-347.
21. FARKAS, H. & Z. NOSZTICZIUS 1985. Use of Liapunov functions in dissipative and explosive models. Ber.Bunsenges.Phys. Chem. 89: 604-605.
22. FARKAS, H. & Z. NOSZTICZIUS 1985. Generalized Lotka-Vol-terra shcemes.Construction of two-dimensional explodator cores and their Liapunov functions via "critical" Hopf bifurcations. J.Chem.Soc.Faraday Trans. 2. 81: 1487-1505.
23. FARKAS, H., V. KERTÉSZ, & Z. NOSZTICZIUS 1986. Explodator and bistability. React.Kin.Catal.Lett. 32: 301-306.
24. GÁSPÁR, V., Z. NOSZTICZIUS, & H. FARKAS 1987. Numerical simulation of the BZ reaction of oxalic acid with a simple four variable model. React.Kin.Catal.Lett. 33: 81-86.
25. FARKAS, H. & Z. NOSZTICZIUS 1987. Analytical investigation of a four variable model of the BZ reaction. React.Kin.Catal.Lett. 33: 93-98.
26. FARKAS, H. & Z. NOSZTICZIUS 1987. Mathematical problems in modellingof the Belousov-Zhabotinsky systems. In "Proceedings of the Eleventh International Conference on Nonlinear Oscillations", Eds. M. Farkas, V. Kert�sz, & G. St�pan, J. Bolyai Math.Soc., Budapest.
27. DANCSÓ, A. & H. FARKAS 1989. On the "simplest" oscillating chemical system. Periodica Polytechnica CE 33: 275-285.
28. DANCSÓ, A., H. FARKAS, M. FARKAS, & GY. SZABÓ 1989. Hopf bifurcation in some chemical models. React.Kin.Catal.Lett.42: 325-330.
29. FARKAS H., GYÖKÉR S. �s WITTMANN M. 1989. Glob lis egyensúlyi bifurkációk vizsgálata a paraméteres reprezentáció módszerével. Alk. Mat. Lapok 14: 335-364.
30. FARKAS, H., Z. NOSZTICZIUS, C.R.SAVAGE, & Z.A. SCHELLY 1989. Two- dimensional explodators 2. Global analysis of the Lotka-Volterra-Brusselator (LVB) model. Acta Phys.Hung. 66: 203-220.
31. KERTÉSZ, V. & H. FARKAS 1989. Local investigation of bistability problems in physico-chemical systems. Acta Chim. Hung. 126: 775-791.
32. OLÁH, K., H. FARKAS, & J. BÓDISS. 1989. The entropy dissipation function. Periodica Polytechnica CE 33: 125-139.
33. DANCSÓ, A., H. FARKAS, M. FARKAS, & GY. SZABÓ 1990. Investigations on a class of generalized two-dimensional Lotka-Volterra schemes. Acta Applicandae Mathematica 23: 103-127.
34. FARKAS, H., S. GYÖKÉR, & M. WITTMANN 1990. Use of the parametric representation method in bifurcation problems. XIIth ICNO, Cracow. In: "Nonlinear Vibration Problems 25, PWNPolish Scientific Publishers, Warszawa 1993.
35. OLÁH, K., J. BÓDISS, & H. FARKAS 1990. Thermodynamic charges. Acta Chimica Hungarica 127: 783-794.
36. FARKAS, H. & Z. NOSZTICZIUS 1992. Explosive, conservative and dissipative systems and chemical oscillators.In: Advances_in_Thermodynamics, Vol.6._Flow,_Diffusion,_and_Rate_Processes. Eds.: S. Sieniutycz and P. Salamon. Taylor and Francis, New York. pp. 303-339.
37. FARKAS H. & P. SIMON 1992. Use of the parametric representation method in revealing the root structure and Hopf bifurcation.J. Mathematical Chemistry 9: 323-339.
38 Noszticzius Z., Farkas H., Schubert A., Swift J., McCormick, W.D. Swinney H.L.: "Experiments at the Boundary of Two Worlds: Reaction, Diffusion, Electric Conduction and Multicomponent Convection in Gel and Fluid Reactors" in "Spatio-Temporal Organization in Nonequilibrium Systems" Eds.: S.C. Müller, T.Plesser, Project Verlag, Dortmund 1992 (Dortmunder Dynamische Woche, June 1992.)
39. Simon L. P., Farkas H.: Polinomok gyökstruktúrájának vizsgálata a parametrikus reprezentáció módszerével, Alk. Mat.Lapok 17. (1993) 41-56.
40. FARKAS H.- NOSZTICZIUS Z. 1994.A termodinamika II. feltételének általánosítása. Termodinamikai Előad sok, Szerk.: LÁZMER G., Eötvös Loránd Fizikai Társulat, Budapest, 109-110 o
41. LÁZÁR, A., Z. NOSZTICZIUS, H. FARKAS, & H.D. FÖRSTERLING 1995.Involutes: the geometry of chemical waves rotating in annular membranes.Chaos 5: 443-447.
42. P.L. Simon, H. Farkas, Geometric theory of trigger waves. A dynamical system approach.J. Math. Chem. 19 (1996) 301-315.
43. P.L. Simon, Nguyen Bich Thuy, H. Farkas, Z. Noszticzius 1996. Application of the parametric representation method to construct bifurcation diagrams for highly non-linear chemical dynamical systems.J. Chem.Soc., Faraday Trans., 1996, 92 (16), 2865-2871.
44. S. Sieniutycz and H. Farkas, 1997: Chemical Waves in Confined Regions by Hamilton-Jacobi-Bellman Theory, Chemical Engineering Science. 52, 2927-2945.
45. A. LÁZÁR, ., H.D. FÖRSTERLING, H. FARKAS, P. L. SIMON, A. VOLFORD, & Z. NOSZTICZIUS, 1997. Waves of excitations on nonuniform membrane rings, casustics, and reverse involutes. Chaos 7(4), 731-737.
46. FARKAS, H. 1997. Hányféle irreverzibilitás van? Iin: Termodinamikai Előad sok, Szerk.: LÁMER G., Eötvös Loránd Fizikai Társulat, Budapest, 1997. 7-10.o..
47. Simon, P. L. and H. Farkas, 1997. Some examples for the extended use of the Parametric Representation Method. Equadiff 9 CD ROM Brno, Masaryk University, Papers pp. 101-109.
48. Farkas, H.: Reversibility - irreversibility - classifications, definitions, and measures. In: Second Workshop on Dissipation in Chemistry, Sep. 1-3. 1997. Borkow. Ed.: A. Radowicz, Scientific Papers of Kielce Unversity of Technology, Vol. 66. (1998), pp.: 95-103.
49. Volford, A., P.L. Simon, Farkas, H., 1999. Waves of excitation in heterogeneous annular region, asymmetric arrangement. Banach Center publications, Geometry and Topology of Caustics – Caustics ’98, Vol. 50, Warszava 1999. Eds.: S. Janeczko and V.M. Zakhalyukin, pp. 305-320. html version
50. Volford, A., P.L. Simon, H. Farkas, and Z. Noszticzius. Rotating chemical waves: theory and experiments. Physica A, 274, 30-49 (1999.)
51. P.L. Simon, H. Farkas, M. Wittmann, Constructing global bifurcation diagrams by the parametric representation method, J. Comp. Appl. Math. 108, 157-176 (1999).
52. Farkas, H., I. Farago, P. L. Simon, 2000. Qualitative properties of conductive heat transfer, in Thermodynamics of Energy Conversion and Transport, eds. S. Sieniutycz and A. de Vos, Springer N.Y., 2000, ISBN: 0-387-98938-2.
53. Farkas H., Hild E. 2000. A napfogyatkozás kétdimenziós modellje . Fizikai Szemle 50, No 3., 97-98.
54. Simon, P. L., E. Hild, and H. Farkas, 2001. Relationships between the discriminant curve and other bifurcation diagrams, Journal of Mathematical Chemistry, 29, No4, 245-265.
55. Khavrus, V. O., H. Farkas*, P. E. Strizhak 2002. Conditions of Appearance of Mixed-Mode Oscillations and Deterministic Chaos in Nonlinear Chemical Systems. Teoret. i experiment. khimija 2002. T. 38. No 5, 293—298 /in Russian/
56. Kály-Kullai, K., A. Volford and H. Farkas, Waves of excitations
in heterogeneous annular region II. Strong asymmetry, in Banach
Center Publications, Vol. 62, (2004), 143-158. html
version
57. S. Sieniutycz and H. Farkas: Progress in variational formulations for macroscopic processes. Chapter 1 in Variational and Extrumum Principles in Macroscopic Systems, S. Sieniutycz and H. Farkas (Eds), Elsevier, 2005, pp. 3-24
58. H. Farkas, K. Kály-Kullai, and S. Sieniutycz: The Fermat
Principle
and Chemical Waves, Chapter 17 in Variational and
Extrumum Principles in Macroscopic
Systems, S. Sieniutycz and H. Farkas (Eds), Elsevier,
2005, pp. 355-374
59. Antal Ákos, Kály-Kullai Kristúf és Farkas Henrik: A napsugárzás spektruma és az emberi szem érzékenysége. (in Hungarian) Fizikai Szemle, XXV. évf. 2005. június. pdf
K Kály-Kullai, A fast method to simulate travelling waves in
nonhomogeneous chemical or biological media, J. Math. Chem. Vol. 34,
(2003), 163-176.